Algae Market and Value Chains

28 – 30 November 2023

EUROPEAN ALGAE BIOMASS ASSOCIATION

Join us at the BioRural Knowledge-exchange Workshop: Advancing the European Rural Bioeconomy

Aquatic Systems

Vítor Verdelho Vieira

General Manager

er Founder & Board Member

lember President

Founder & Manager

er Founder

EUROPEAN ALGAE BIOMASS ASSOCIATION

SUMMARY

1. THE INDUSTRY STATUS 1.1. THE PRODUCTION PLATFORMS 1.2. THE GLOBAL ALGAE PRODUCTION

2. MARKET APPLICATIONS

2.1. FUEL
2.2. WASTEWATER
2.3. CHEMICALS (BIOPLASTICS, BIOINK, TEXTILES, MATERIALS)
2.6. FOOD (INCLUDING SUPPLEMENTS AND INGREDIENTS))
2.7. COSMETICS (INCLUDING COSMECEUTICALS)
2.8. HEALTH (NUTRACEUTICALS AND SUPPLEMENTS, PHARMA)

3. VALUE CHAINS

What are algae?

ALGAE AND TAXONOMY

Algae is a **common name** for a group of taxonomically unrelated organisms sharing a number of traits.

Algae include cyanobacteria, eukaryotic microalgae and seaweeds.

Common traits are:

- Oxygenic photosynthesis (use of visible light to fix CO₂ with O₂ release);
- Chlorophylls as main photosynthetic pigment;
- Lack of differentiated tissues;
- Primary producers in aquatics ecosystems.

There are exceptions because some algae can grow in the dark using simple organic compounds and some algae do not possess photosynthetic organelles so are unable to perform photosynthesis.

Alison G. Smith, Mario R. Tredici, Sammy Boussiba, Vítor Verdelho, Jean-Paul Cadoret, Matthew P. Davey, Maria Huete-Ortega, Francisco Gabriel Acien, Ulrike Schmid-Staiger, Herminia Rodriguez, John Benemann, Stefan Leu, Rodolfi, Natascia Biondi, Lisandra Meinerz (2021) **What are algae?** EABA Position Paper <u>www.what-are-algae.com</u> (2015-2019)

Adapted from:

A review of high value-added molecules production by microalgae in light of the classification <u>Wendie Levasseur, Patrick Perré, Victor Pozzobon</u> (2020) <u>Biotechnology Advances, Vol. 41</u>, July–August. <u>https://doi.org/10.1016/j.biotechadv.2020.107545</u>

Major microalgae phyla distribution as per seven-kingdom classification scheme inspired from (20) with classes used for various biotechnological applications | (20) Michael A. Ruggiero, Dennis P. Gordon, Thomas M. Orrell, Nicolas Bailly, Thierry Bourgoin, Richard C. Brusca, Thomas Cavalier-Smith, Michael D. Guiry, and Paul M. Kirk. **| A Higher Level Classification of All Living Organisms.** *PLoS ONE*, **10(4)**, **April 2015. ISSN 1932- 6203**.

THE INDUSTRY STATUS

www.eaba-association.org

Algae production

MACROALGAE

- \circ Cultivation in the ocean
- Cultivation in ponds
- Harvesting from nature

<u>Multicellular</u> biochemical composition 10-25% protein 30-50% carbohydrates 0.5-5% lipids < 40 meter size

M ICR OA LGA E

- Cultivation in open systems
- Cultivation in photobioreactors
- Cultivation in fermentors

 > <u>Unicellular</u> biochemical composition
 30-70% protein
 10-30% carbohydrates
 10-50% lipids
 < some rich in ω-3 fatty acids
 < 1 μm = 1 meter/1000 size

René Wijffels (2019)

1.2. THE GLOBAL ALGAE PRODUCTION

ALGAE BIOMASS MARKET ASSESSMENT

Presented by: Vitor Verdelho, General Manager, EABA

in Collaboration with Meticulous Research

www.meticulousresearch.com

Algae biomass sub-sectors and value-chain

BIOMASS PRODUCTION

EUROPE

20 M€/year

4.500 jobs

EUROPE

50 M€/year

3.500 jobs

50.000 ton /year DW

1.000 ton /year DW

WORLD

2.5 b€/year

25.000 jobs

WORLD

10 b€/year

+300.000 jobs

1.000.000 ton /year DW

150.000 ton /year DW

Values for 2021

CONSUMER PRODUCTS ****

Sunlight grown MICROALGAE (autotrophic)

Fermentation grown MICROALGAE* (heterotrophic)

WORLD EUROPE** 55.000 ton /year DW 2.000 ton /year DW 200 M€/year 10 M€/year 500 jobs 70 jobs

Mostly Schizochytrium and Chlorella

PROCESSED BIOMASS (MOSTLY EXTRACTS)

Mostly Astaxanthin, Phycocyanin, Beta-carotene

 WORLD
 EUROPE
 WORLD
 EUROPE

 3.000 ton /year DW
 100 ton /year
 from 100% to 1%
 +200 M€/year

 1.5 b€/year
 50 M€/year
 but average 3%
 +30 b€/year

Mostly EPA, DHA oils from Schizochytrium

WORLD	EUROPE**
30.000 ton /year DW	20.000 ton /y
400 M€/year	300 M€/year
500 jobs	400 jobs

100.000 ton /year DW 1.000 ton /year***

Mostly agar and carrageenans

ROPE** 000 ton /year) M€/year) jobs

EUROPE**

30 M€/year

> 500 jobs

WORLD from 100% to 1% but average 5% +1.7 b€/year

EUROPE +800b€/year

MACROALGAE (Seaweeds)

VALUES FOR 2019

(*) includes the Labyrinthulomycetes; (**) European companies, eventually not produced in Europe; (***) not including 7.000 Maerl (*Litothamnium*); (****) On average price doubes in each step in the value chain = +2 steps between Processing and Consumers. Adapted from: Araújo, R. Current Status of the Algae Production Industry in Europe: An Emerging Sector of the Blue Bioeconomy. Front. Mar. Sci., 27 January 2021 | https://doi.org/10.3389/fmars.2020.626389

WORLD

800 M€/year

> 3.000 jobs

WORLD from 100% to 1% but average 10% EUROPE +120 M€/year 500 jobs

+3.2 b€/year

% +1201 % 500 jo

DW Dry Weight / WW Wet Weight

8

www.eaba-association.org

Algae biomass production: relevance of different species

This table aims to provide the understanding about the **order of magnitude**

Sunlight grown MICROALGAE (autotrophic)	EUROPE Arthrospira (spirulina) Chlorella vulgaris, C. pyrenoidosa, C. luteoviridis Haematococcus pluvialis Nannochloropis oculata, N. oceanica Dunaliella salina	ton. DW/year 2018 130 80 80 70 40	A A C A H D N E N	VORLD rthrospira platensis, A. maxima (spirulina) hlorella phanizomenon aematococcus unaliella lostoc uglena lannochloropsis	ton. DW/year 2018 > 40 000 20 000 2 000 500 500 200 200 500 500 500
Fermentation grown MICROALGAE* (heterotrophic)	Schizochytrium Chlorella Galdieria	ton. DW/year 2020 VALUES UNDER EVALU	Sa A T ION CI Ea Ga	chizochytrium hlorella uglena hlamydomonas aldieria	ton. DW/year 2020 VALUES UNDER EVALUATION Total 55.000

Algae biomass production: relevance of different species

This table aims to provide the understanding about the **order of magnitude**

CULTIVATION

ton. WW/year 2019

Saccharina japonnica	11 448 300
Eucheuma	9 397 500
Gracilaria	3 454 000
Kappaphycus, alvarezii	1 597 000
Undaria, pinnatifida	2 320 000
Porphyra	2 872 000
Lessonia	300 000
Sargassum fusiforme	268 700
Ascophylum	80 000
Macrocystis	50 000
Sarcothalia	30 000

WORLD

31 867 500

WORLD ALGAE BIOMASS PRODUCTION

	SEAWEED
BUSINESS (1): TURNOVER: GROWTH: > 8%/vear	> 2.500 > 10 b€/year
PRODUCTION: JOBS:	> 8.000.000 ton./year fresh bulk (10% DW) > 250.000 (labor intensive, low tech cultivation)

DW Dry Weight / WW Wet Weight

MACROALGAE (Seaweeds)

FUROPF

ton. WW/year 2019

WILD POPULATION CAPTURE

Laminaria (L. digitata, L. hyperborea)	195 000
Ascophylum nodosum	78 500
Lithothamnium calcareum / Phymatolithon purpureum	50 000
Ulva, (U. lactuca, U. Rigida)	6 000
Gelidium, sesquipedale, royale	4 000
Fucus (F. serratus, vesiculosus)	600
Palmaria palmata	430
Chondrus crispus and Mastocarpus stellatus	400
Himanthalia elongata	150

TOTAL (based on Wet Weight values)333 919TOTAL (based on Dry Weight values)50 000

SEAWEED AQUACULTURE

Saccharina latissima	510
Undaria pinnatifida	300
Alaria esculenta	400
Gracilaria gracilis	100
Ulva (U. lactuca, U. Rigida)	50
Asparagopsis (A.taxiformis, A. Armata)	20

TOTAL in Wet Weight (ton. WW)	1 270
TOTAL in eq. Dry Weight (ton. DW)	202

M A CR OA LGA E

Macroalgae harvested from wild stocks in Europe

Macroalgae cultivated in Europe

Macroalgae cultivated around the World

www.eaba-association.org

MICROALGAE

Autotrophic microalge produced in Europe in photobioreactors and raceways

Autotrophic microalge in the world additionally to the genera poduced in Europe

Heterotrophic microalge in world produced with fermentation

2. M A R KE T A PPLICATION S

Applications

Macro and microalgae have similar applications

3. VALUE CHAINS

www.eaba-association.org

The product or service value depends on "value-chain" Position

Value-chain analysis is a complex topic very often mentioned by non-experts that bring a highly confusing, misleading and unclear approach.

The 'value-chain' is defined in a business context as: **"the interrelated operating activities businesses perform during the process of converting raw materials into finished products"**.

The concept comes from business management and was first described and popularized by Michael Porter in his 1985 best-seller (Competitive Advantage: Creating and Sustaining Superior Performance).

Product value chain

Porter's Value Chain Model In A Nutshell

In his 1985 book Competitive Advantage, Porter explains that a value chain is a collection of processes that a company performs to create value for its consumers. As a result, he asserts that value chain analysis is directly linked to competitive advantage. Porter's Value Chain Model is a strategic management tool developed by Harvard Business School professor Michael Porter. The tool analyses a company's value chain – defined as the combination of processes that the company uses to make money.

Value depends on formulation

(*) paste **microalge** algae can be in liquid for, live, also frozen; **seaweed** can be fresh and fermented (**) dried include solar dried, spay-dried, drum-dried or freeze-dried

Value-chain for microalgae biomass

Product Value Chain

Value-chain for microalgae based products

		FORMULATION	DISTRIBUTION				
	PRIMARY	formulations					
		mixing	broker	wholesaler	retailer	consumer	
		> packaging			(shops)	The global microalgae value chain for any microalgae or microalgae	
						based product can be quite simple	
		marketing	sales			value is added along the process	
		logistics		logistics		of transforming a biological material in a product for a client or	
						even a consumer.	
	SUPPORT	technology	procurement	procurement	procurement	Different products can come-out	
		infrastructure				in different points of the value-	
		managment				forward to the next point of the chain or further to other point.	
	PRODUCTS	mixed				Packaging defines a product that can be traded.	
Rusiness Value Chain		Nutraceuticals					
Dusiness value chain	APPLICATIONS	Cosmeceuticals					

÷

IDEA

Implementation and development of economic viable algae-based value chains

There is the **Product Value Chain**

> From the pond to the paste, dried or extract

There is the **Business Value Chain**

> From the biomass to final products with a wide range of applications

Thank You!

From the book: The Business Case Roadmap

Vítor Verdelho Vieira

General Manager

President

Founder & Manager Founder

BIOMASS ASSOCIATION

algae for future

Cell 4 Food

