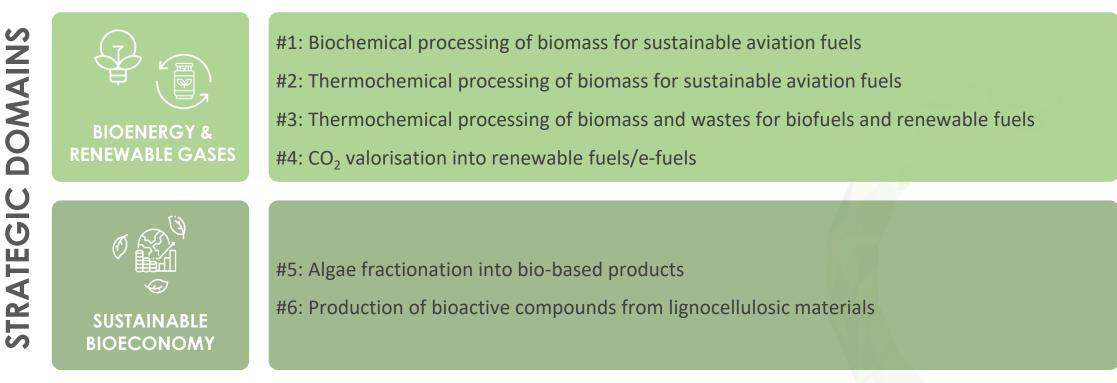


Laboratório Colaborativo para as Biorrefinarias

Gasification - Technology relevance and case study in Portugal

Octávio Alves, PhD researcher Forestry and Habitats Online Knowledge Exchange Workshop April 16th, 2024



Financiado pela União Europeia

BIOREF (Collaborative Laboratory for Biorefineries) is a private and non-profit association aimed to deploy scientific knowledge, technology and innovation in the **development of biorefineries**.

R&I ACTIVITIES

Our associates:

• Our services:

Consulting

Scale-up, Market Studies and Economic, Energy and Environmental Feasibility

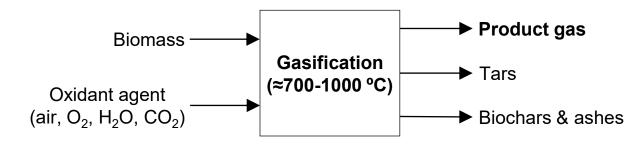
Analysis of New Sustainable Markets

Diversification and Integration of other emerging areas of biomass and biorefineries

Evaluation, Assistance and Technological Development

Physical, chemical, thermochemical and biological processes

State-of-the-art Studies


In the Technological aspect and in the generation of Value Added Products/Services

Integration and Stimulation of Biorefineries

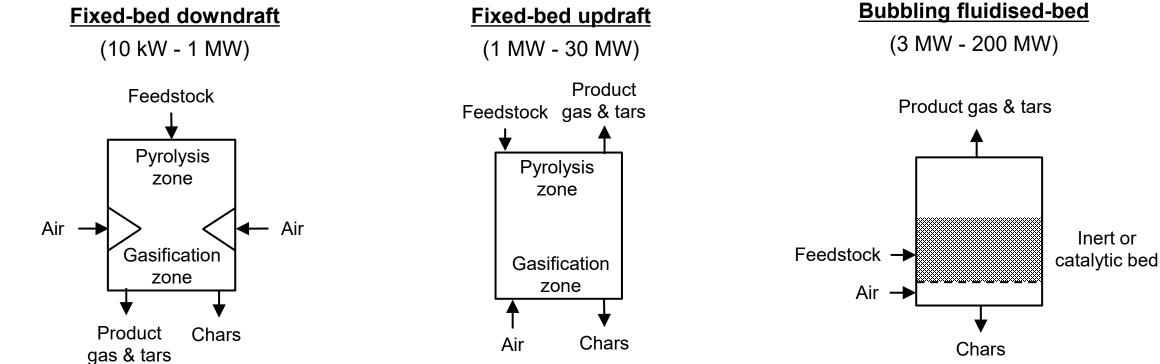
Recovery of waste in bioenergy, bioproducts and biofuels in the context of the Circular Economy

- Definition: thermochemical conversion of biomass using oxidant agents for partial oxidation at high temperature, generating a product gas for energy applications.
- General schematic, reactions and products:

Pilot-scale gasifier

Reactions			
Oxidation	Reduction		
$C + O_2 \rightarrow CO_2$ $2C + O_2 \rightarrow 2CO$	$C + 2H_2 \leftrightarrow CH_4$ (hydrogasification)		
	$CO + H_2O \leftrightarrow CO + H_2$ (water-gas shift)		
	$C + CO_2 \leftrightarrow 2CO$ (Boudouard)		

Char & ash



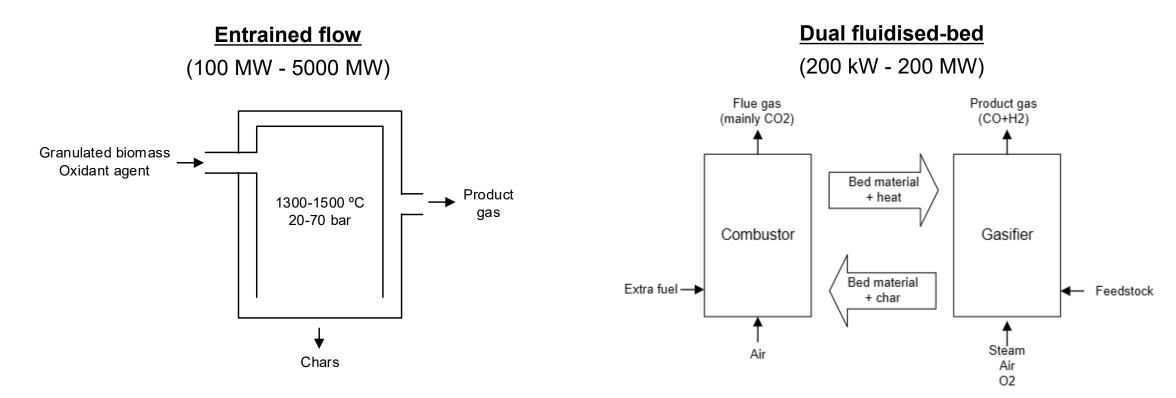
Product properties and applications:

Product	Properties	Applications
Product gas	 High CO content (5-26 vol.%). 	 Energy generation (thermal and electric).
	 High H₂ content (13-27 vol.%). 	 Renewable gases (biomethane and hydrogen).
	 Significant lower heating value (7-16 MJ/m³). 	 Liquid biofuels (methanol, ethanol, dimethyl ether, Fischer-Tropsch diesel and gasoline).
Biochar	 High carbon and ash contents. 	Catalysts.
		 Construction materials.
		 Remediation of effluents.
Tar	 Mixture of liquid hydrocarbons (e.g., naphtalene, benzene, toluene). 	 Recovery of chemical products.
		 Liquid fuels (through regeneration).
		 Recirculation to the gasifier.
		(Basu, 2013; Molino et al., 2018)

Reactor configurations:

Characteristics:

- less tars;
- lower startup time;
- small-scale implementation;
- demanding requirements for feedstocks.


- **Characteristics:**
- admits wetter feedstocks;
- high tar amounts;
- reduced process flexibility.

Characteristics:

- greater tolerance to feedstock variability;
- constant temperature;
- implementation at larger scales.

Reactor configurations (cont.):

Characteristics:

- minimal tar production;
- high feedstock conversion rates;
- demanding feedstock pre-treatment (grains/powder, ≈250-1000 µm).

Characteristics:

- large-scale implementation;
- separation of CO₂-rich flue gas;
- high H₂ and CO contents in product gas;
- high calorific value (12-20 MJ/Nm³).

Product gas characteristics:

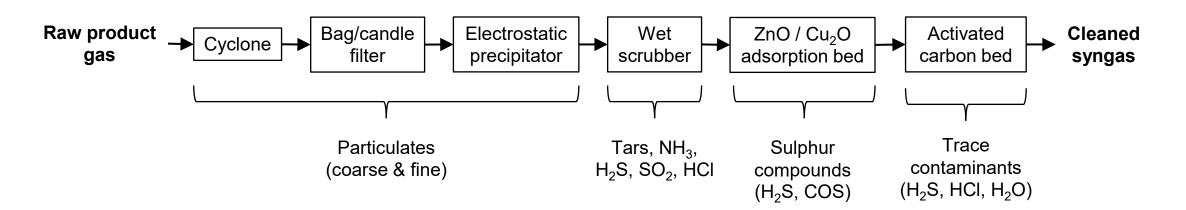
Postar	Conditions	Syngas co	LHV			
Reactor		H ₂	СО	CO ₂	CH ₄	(MJ/m³)
Fluidised bed	 Pine sawdust. 700-900 °C. Air-steam. 	21-39	35-43	18-20	6-10	7.4-8.6
Updraft	Woodchips.900 °C.Air.	18	14	14	2	4,4
Downdraft	Wooden cubes.800-850 °C.Air	11-20	17-24	7-11	1-2	4-5
Dual fluidised bed	Bark.850°C.Steam.	45	23	18	8	10.6
Entrained flow	Corn cobs.Oxygen.	25-28	34-36	26-35	2-5	7.7-9.4

(Molino et al., 2018; Hanchate et al., 2021; Kremling et al., 2017; Hsi et al., 2008; Dogru & Erdem, 2020)

2 Gasification concepts and relevance (cont.)

Gasification pros and cons (compared to combustion)					
Pros	Cons				
 Lower emissions of pollutants (NO_x, SO₂, dioxins and furans). Implementation at smaller scales (<100 kW). Higher energy efficiency during syngas combustion. Flexibility of gas applications (energy and fuels). 	 Pre-treatment of feedstocks may be demanding. Lower technological maturity. Higher precision of oxidant agent injection. Instability of temperature. Less silent and odorless process. 				
 Autothermal operation is possible. 					
 Possible valorisation of by-products (chars and tars). 					

(Grande et al., 2021)

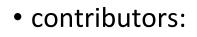


Contaminants in product gas:

Contaminant	NH ₃	H₂S	HCI	HCN	NO _x	SO ₂	
Concentration (ppmv)	33-7000	33-2500	60-650	100-400	<650	<1500	Cause

- Catalyst poisoning.
- Corrosion.
- Formation of deposits.
- Air pollution & health diseases.

Configuration example for a gas cleanup system:



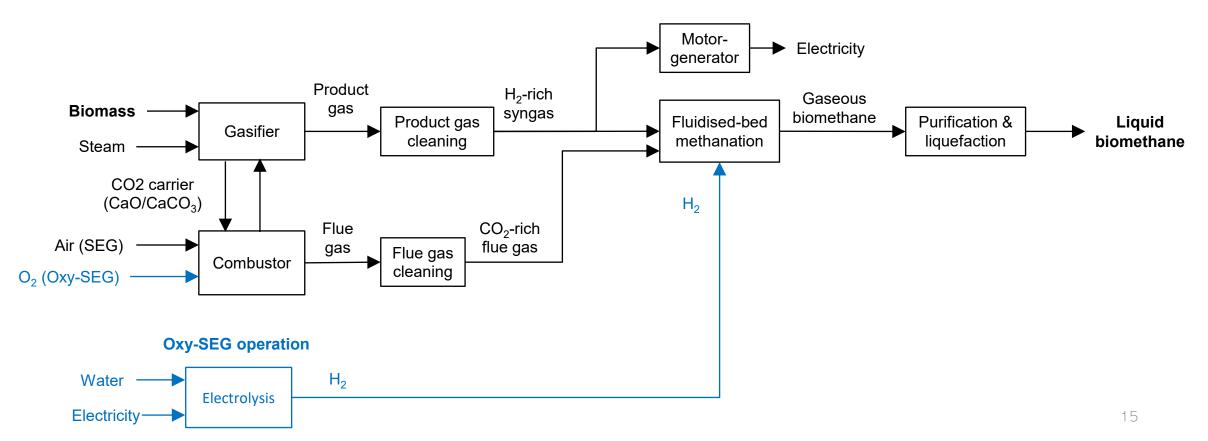
(Bari et al., 2000; Recari et al., 2016; Dias, 2008; Tamošiūnas et al., 2023; Liu et al., 2012) 11

- Project HYFUELUP (Hybrid Biomethane Production from Integrated Biomass Conversion):
 - goal: development of an advanced technology to convert low-grade feedstocks into biomethane using gasification, electrolysis and methanation (TRL 6-7);
 - period: 11/2022 to 10/2026;
 - funded by Horizon Europe;
 - website: <u>https://hyfuelup.eu/;</u>
 - project consortium:
 - leader:

Johnson Matthey Inspiring science, enhancing life

ELNEG

- Project HYFUELUP key innovations:
 - diversification of feedstocks (from crop rotation systems and low-grade wastes (digestate));
 - hybrid SEG/Oxy-SEG operation in the same reactor configuration;
 - flexible H2 addition for methanation;
 - demonstration of a complete value chain integrating SEG, catalytic fluidised-bed methanation, and high-temperature electrolysis;
 - enhanced carbon conversion efficiency (65-71 % as HHV);
 - reduced production of GHG compared to natural gas (<90 %).



- Project HYFUELUP demonstration site:
 - located in Tondela (Viseu), Portugal;
 - retrofitting of an existing CFB gasifier;
 - feedstocks: digestate sludges and lignocellulosic wastes (1-4 t/h);
 - biomethane production: 50 m³/h (or 500 kW_{th LHV}).

- Project HYFUELUP technical aspects:
 - gasifier configuration: dual fluidised bed (sorption enhanced gasification, SEG);
 - dual mode of operation (SEG/Oxy-SEG), according to H₂:CO ratio in the syngas:

- Gasification is a sustainable and flexible process for valorising residual feedstocks into different added-value products.
- The process contributes to fulfil the European environmental policies regarding renewable fuels and GHG abatement.
- Injection of steam or O₂ enriches syngas composition, but increases process complexity and costs.
- The gas cleanup step is a critical point in the process → a thorough planning at affordable cost is required.
- More projects and investments are required at a national level.

Laboratório Colaborativo para as Biorrefinarias

Thank you for the attention!

BI

Rua Amieira APARTADO 1089 4466-901 S. Mamede Infesta Portugal www.bioref-colab.pt geral@bioref-colab.pt